Enhanced production of polyhydroxybutyrate by multiple dividing E. coli

نویسندگان

  • Hong Wu
  • Zhongyun Fan
  • Xiaoran Jiang
  • Jinchun Chen
  • Guo-Qiang Chen
چکیده

BACKGROUND Most bacteria are grown in a binary fission way meaning a bacterial cell is equally divided into two. Polyhydroxyalkanoates (PHA) can be accumulated as inclusion bodies by bacteria. The cell division way and morphology have been shown to play an important role in regulating the bacterial growth and PHA storages. RESULTS The common growth pattern of Escherichia coli was changed to multiple fission patterns by deleting fission related genes minC and minD together, allowing the formation of multiple fission rings (Z-rings) in several positions of an elongated cell, thus a bacterial cell was observed to be divided into more than two daughter cells at same time. To further improve cell growth and PHA production, some genes related with division process including ftsQ, ftsL, ftsW, ftsN and ftsZ, together with the cell shape control gene mreB, were all overexpressed in E. coli JM109 ∆minCD. The changing pattern of E. coli cell growth and morphology resulted in more cell dry weights (CDW) and more than 80 % polyhydroxybutyrate (PHB) accumulation increases compared to its binary fission control grown under the same conditions. CONCLUSIONS This study clearly demonstrated that combined over-expression genes ftsQ, ftsW, ftsN, ftsL and ftsZ together with shape control gene mreB in multiple division bacterial E. coli JM109 ∆minCD benefited PHA accumulation. Our study provides useful information on increasing the yield of PHA by changing the cell division pattern and cell morphology of E. coli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Expression of Recombinant Activin A in Escherichia coli by Optimization of Induction Parameters

Activin A is a member of the transforming growth factor β super family. Because of its extensive clinical usages, its recombinant production is beneficial. In this study, activin A was expressed in E. coli using the pET 21a expression vector. The optimization of the activin A production in E. coli was done by using the response surface methodology (RSM). At this stage, the effect of IPTG and la...

متن کامل

Modeling and Simulation of Polyhydroxybutyrate Production by Protomonas extorquens in Fed-batch Culture

Modeling and simulation of Polyhydroxybutyrate (PHB) production by Protomonas extorquens in fed-batch culture were conducted in this research. The fed-batch model, developed for this process, employed a kinetic model proposed by other researchers. Several kinetic models were investigated to choose the best model. The criterion for this selection was goodness of fit (δ2). Haldane kinetic model w...

متن کامل

Enhanced Production of Insulin-Like Growth Factor I Protein in Escherichia coli by optimization of five key factors

Abstract Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. The major objective of this study is over- production of recombinant human insulin-like growth factor I( rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. Up to now E. coli expression system has been widely us...

متن کامل

Enhanced Production of Insulin-Like Growth Factor I Protein in Escherichia coli by optimization of five key factors

Abstract Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. The major objective of this study is over- production of recombinant human insulin-like growth factor I( rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. Up to now E. coli expression system has been widely us...

متن کامل

Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase 3 and acetyl-CoA synthetase.

Recombinant Escherichia coli was constructed for co-production of hydrogen and polyhydroxybutyrate (PHB) due to its rapid growth and convenience of genetic manipulation. In particular, anaerobic metabolic pathways dedicated to co-production of hydrogen and PHB were established due to the advantages of directing fluxes away from toxic compounds such as formate and acetate to useful products. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016